登陆注册
179504

人工智能背后的"人工" 河南河北等地现特色"数据标注村"

第一财经2020-08-13 07:24:041

人工智能背后的“人工” 谁在训练AI?

作者: 刘佳

[ 据IDC统计,全球每年生产的数据量将从2016年的16.1ZB增至2025年的163ZB。 ]

“抬头是山,低头是煤。”曾在山西传统煤矿工作8年, 整天盯在电脑屏幕前监测矿井瓦斯浓度的郭梅从来没有想过,有一天自己的工作会和人工智能有了联系。

两年前,因为孩子来省会城市太原上学,郭梅在附近求职,做起了数据标注。同样是盯在电脑屏幕前,现在郭梅每天的工作是给图片、文本或者声音进行标注,再把它们交给机器训练和学习。从一开始每天只能标注两三百张,到现在的日均完成1300多张,郭梅按件计酬的收入逐渐提升,已高于当地平均收入水平。

人工智能行业里有句话:有多少智能,背后就有多少人工。像郭梅一样,AI数据标注师成为了随着人工智能发展而出现的新兴就业岗位。2020年2月,“人工智能训练师”正式成为新职业并纳入国家职业分类目录。

他们被称为人工智能背后的人。数据采集和标注是他们的主要工作,目的就是要教会AI认识数据,转化成AI能消化和吸收的“语言”。

这项工作看起来简单枯燥,但意义非常。“就像一辆车没有汽油走不了,数据就是人工智能发展的燃料。有了我们的数据,机器(算法)不断迭代,就能推动人工智能往更好的方向发展。” 从事数据标注的山西麟诺公司总经理李应维对第一财经表示。

“从没想过做人工智能”

二十出头的李宇龙从未亲眼见过自动驾驶汽车,但他的工作却和自动驾驶的AI算法息息相关。

他曾经在生产电子类产品的工厂工作,转做AI数据标注后,老板交给他的第一个项目就是“车道线打点”。

简单来说,就是给无人驾驶进行车道线标注。当无人车行驶到一段路时,会自动连续拍摄图片,李宇龙要做的,就是对图片上车辆所行驶的车道旁边两侧的线进行标注,识别虚线还是实线,匹配所对应的属性,从而告诉人工智能虚线车辆可以进行变道,实线不可以进行变道。而标注的难点,在于交会和分岔。

他把自己的工作比作“幼教”,当他拿出一个红苹果给机器并教会它识别,再拿一个绿苹果给它时,因为颜色差异,机器就无法认出了。李宇龙的工作就是不断地帮助机器识别不同的颜色、大小,甚至是被咬了一口的苹果或是坏苹果,直到随便拿出一个苹果,它都能认出来。

李宇龙告诉第一财经记者,数据标注的工作是“按件计酬”,他的日均收入在300元左右。数据显示,2019年,太原市的城镇居民全年人均可支配收入36362元。他说,自己的工资水平在整个基地标注师日均收入中处于中等水平,“据我了解,有人日均收入甚至能破千。”

对于自己的工作,李宇龙说,刚开始接触时,只把它看作一个重复性的工作,并没有想太多。直到后来接触项目多了,涉及的领域包括教育、安防、金融、交通医疗和电商等,每天都在挑战学习能力,也会想要更深入了解自己标注的内容可以应用到的行业。虽然还没有坐过无人车,但他说,现在看到无人驾驶的时候,会想到这里面也包含了自己的标注成果。

像李宇龙、郭梅的工作一样,第一财经记者看到,在每一间数据标注的办公室里,都是类似的工作场景:一排排电脑屏幕前,年轻的数据标注师根据各自分配的任务,对文本、图片、语音和视频做标记、标重点、打标签、框对象、做注释等方式对数据集作出标注,他们可能在为无人车标注车道线、红绿灯,也可能是在为肺部影像标注病毒数据。

是不是“AI富士康”?

数据标注产业促进了不少城镇和农村就业,在河南、河北、贵州等地,还出现了一些特色的“数据标注村”。

据IDC统计,全球每年生产的数据量将从2016年的16.1ZB猛增至2025年的163ZB,其中80%~90%是非结构化数据,这些数据经过清洗与标注才能被唤醒价值。在我国,每年需要进行标注的语音数据超过200万小时,图片则有数亿张,这就产生了源源不断的清洗与标注需求。李应维对第一财经记者说, 他预计明年企业的用工将翻一倍,从160多人扩展到300人左右。

李应维公司所在的百度(山西)人工智能基础数据产业基地,已经成为中国人员和产值规模第一的单体数据标注基地。AI数据标注师从业人员超过2000人,实现营业收入超亿元,企业入驻35家。该基地计划在未来5年培养5万名AI数据标注师,并引入更多AI合作伙伴。

不过,数据标注师看上去是人工智能领域一个“入门”工种:技术门槛低,招工人群范围广泛。他们通过每天数千次的重复动作,和最前沿科技的人工智能产生联系。也因此,外界给这个行业贴上了“AI富士康”的标签。

数据标注带来技术红利,但如果人工智能发展到一定程度,甚至有可能够取代数据标注师的工作。

艾瑞咨询在一份人工智能相关报告指出,随着算法需求越来越旺盛,依赖人工标注不能满足市场需求,因此增强数据处理平台持续学习能力,由机器持续学习人工标注,提升预标注和自动标注能力对人工的替代率将成趋势。此外,随着 AI对数据的要求越来越高,数据标注行业也正逐步进入精细化阶段。

百度(山西)人工智能基础数据产业基地负责人尉赤认为,数据标注是一个很好的入门,进来之后有机会更深度参与到产业链协作当中,例如后续当数据标注越来越机器化,人工和自动化之间要有机的协同,这也对员工提出了更高要求。

此外,当数据标注越来越机器化,人工智能训练师是一个转换工种的机会,标注员们现在标注数据,未来可能向数据治理、数据解决方案设计和项目管理等方向发展。

责任编辑:杨亚龙

0001
评论列表
共(0)条
热点
关注
推荐